conrol the filling level and temperature of the ground of the distillation column by the supply of the heat steam and the drain of the product
system_model.py
import sympy as sp
import symbtools as st
import importlib
import sys, os
import numpy as np
from pyblocksim import *
# from ipydex import IPS, activate_ips_on_exception
from ackrep_core.system_model_management import GenericModel, import_parameters
# Import parameter_file
params = import_parameters()
# link to documentation with examples: https://ackrep-doc.readthedocs.io/en/latest/devdoc/contributing_data.html
class Model(GenericModel):
def initialize(self):
"""
this function is called by the constructor of GenericModel
:return: None
"""
# ---------start of edit section--------------------------------------
# Define number of inputs -- MODEL DEPENDENT
self.u_dim = 7
# Set "sys_dim" to constant value, if system dimension is constant
self.sys_dim = 2
# ---------end of edit section----------------------------------------
# check existence of params file
self.has_params = True
self.params = params
# ----------- SET DEFAULT INPUT FUNCTION ---------- #
# --------------- Only for non-autonomous Systems
def uu_default_func(self):
"""
define input function
:return:(function with 2 args - t, xx_nv) default input function
"""
# ---------start of edit section--------------------------------------
def uu_rhs(t, xx_nv):
"""
sequence of numerical input values
:param t:(scalar or vector) time
:param xx_nv:(vector or array of vectors) numeric state vector
:return:(list) numeric inputs
"""
u1 = 1
u2 = 1
u3 = 1
u4 = 1
u5 = 1
u6 = 1
u7 = 1
return [u1, u2, u3, u4, u5, u6, u7]
# ---------end of edit section----------------------------------------
return uu_rhs
def get_rhs_func(self):
msg = "This DAE model has no rhs func like ODE models."
raise NotImplementedError(msg)
def get_rhs_symbolic(self):
"""This model is not represented by the standard rhs equations."""
return False
def get_Blockfnc(self):
"""
generate blockfunctions
:return: (list) two blockfunctions and input
"""
x1, x2 = self.xx_symb # state components
KR1, TN1, KR2, TN2, T1, K1, K2, K3, K4 = self.pp_symb # parameters
KR1 = self.pp_dict[KR1]
TN1 = self.pp_dict[TN1]
KR2 = self.pp_dict[KR2]
TN2 = self.pp_dict[TN2]
T1 = self.pp_dict[T1]
K1 = self.pp_dict[K1]
K2 = self.pp_dict[K2]
K3 = self.pp_dict[K3]
K4 = self.pp_dict[K4]
# u1, u2, u3, u4, u5, u6, u7 = self.uu_symb # inputs
u1, u2, u3, u4, u5, u6, u7 = inputs("u1, u2, u3, u4, u5, u6, u7")
DIF1 = Blockfnc(u3 - u1)
DIF2 = Blockfnc(-u2)
PI1 = TFBlock(KR1 * (1 + 1 / (s * TN1)), DIF1.Y)
PI2 = TFBlock(KR2 * (1 + 1 / (s * TN2)), DIF2.Y)
SUM11 = Blockfnc(PI1.Y + u4)
SUM21 = Blockfnc(PI1.Y + u5)
SUM12 = Blockfnc(PI2.Y + u6)
SUM22 = Blockfnc(PI2.Y + u7)
P11 = TFBlock(K1 / s, SUM11.Y)
P21 = TFBlock(K4 / (1 + s * T1), SUM21.Y)
P12 = TFBlock(K3 / s, SUM12.Y)
P22 = TFBlock(K2 / s, SUM22.Y)
SUM1 = Blockfnc(P11.Y + P12.Y)
SUM2 = Blockfnc(P22.Y + P21.Y)
loop(SUM1.Y, u1)
loop(SUM2.Y, u2)
return [SUM1, SUM2, u3]
simulation.py
import numpy as np
import system_model
from scipy.integrate import solve_ivp
from pyblocksim import *
from ackrep_core import ResultContainer
from ackrep_core.system_model_management import save_plot_in_dir
import matplotlib.pyplot as plt
import os
# link to documentation with examples: https://ackrep-doc.readthedocs.io/en/latest/devdoc/contributing_data.html
def simulate():
"""
simulate the system model
:return: simulation data
"""
model = system_model.Model()
# rhs_xx_pp_symb = model.get_rhs_symbolic()
# print("Computational Equations:\n")
# for i, eq in enumerate(rhs_xx_pp_symb):
# print(f"dot_x{i+1} =", eq)
# ---------start of edit section--------------------------------------
SUM1, SUM2, u3 = model.get_Blockfnc()
thestep = stepfnc(1.0, 1)
t, states = blocksimulation(40, (u3, thestep), dt=0.05)
bo = compute_block_ouptputs(states)
simulation_data = [t, bo[SUM1], bo[SUM2]]
# ---------end of edit section----------------------------------------
save_plot(simulation_data)
return simulation_data
def save_plot(simulation_data):
"""
plot data and save the plot
:param simulation_data: simulation_data of system_model
:return: None
"""
# ---------start of edit section--------------------------------------
# plot of your data
plt.plot(simulation_data[0], simulation_data[1], label="Filling level")
plt.plot(simulation_data[0], simulation_data[2], label="Temperature")
plt.xlabel("Time [s]")
plt.legend()
plt.grid()
# ---------end of edit section----------------------------------------
plt.tight_layout()
save_plot_in_dir()
def evaluate_simulation(simulation_data):
"""
assert that the simulation results are as expected
:param simulation_data: simulation_data of system_model
:return:
"""
# ---------start of edit section--------------------------------------
# fill in final states of simulation to check your model
# simulation_data.y[i][-1]
expected_final_state = [40.05, 0.99676226, -2.16627258e-03]
# ---------end of edit section----------------------------------------
rc = ResultContainer(score=1.0)
simulated_final_state = [simulation_data[0][-1], simulation_data[1][-1], simulation_data[2][-1]]
rc.final_state_errors = [
simulated_final_state[i] - expected_final_state[i] for i in np.arange(0, len(simulated_final_state))
]
rc.success = np.allclose(expected_final_state, simulated_final_state, rtol=0, atol=1e-2)
return rc
parameters.py
import sys
import os
import numpy as np
import sympy as sp
import tabulate as tab
# link to documentation with examples: https://ackrep-doc.readthedocs.io/en/latest/devdoc/contributing_data.html
# set model name
model_name = "distillation column"
# ---------- create symbolic parameters
pp_symb = [KR1, TN1, KR2, TN2, T1, K1, K2, K3, K4] = sp.symbols("KR1, TN1, KR2, TN2, T1, K1, K2, K3, K4", real=True)
# ---------- create symbolic parameter functions
# parameter values can be constant/fixed values OR set in relation to other parameters (for example: a = 2*b)
KR1_sf = 1.7
TN1_sf = 1.29
KR2_sf = 0.57
TN2_sf = 1.29
### Plant
T1_sf = 1.0
# equilibrium pojnt 1
K1_sf, K2_sf, K3_sf, K4_sf = 0.4, 1.2, -0.8, -0.2
# equilibrium point 2
# K1_sf, K2_sf, K3_sf, K4_sf = 0.4, 1.2, -1.28, -0.32
# switch of coupling:
# K3_sf, K4_sf = 0,0
# list of symbolic parameter functions
# tailing "_sf" stands for "symbolic parameter function"
pp_sf = [KR1_sf, TN1_sf, KR2_sf, TN2_sf, T1_sf, K1_sf, K2_sf, K3_sf, K4_sf]
# ---------- list for substitution
# -- entries are tuples like: (independent symbolic parameter, numerical value)
pp_subs_list = []
# OPTONAL: Dictionary which defines how certain variables shall be written
# in the table - key: Symbolic Variable, Value: LaTeX Representation/Code
# useful for example for complex variables: {Z: r"\underline{Z}"}
latex_names = {KR1: r"K_{R1}", TN1: r"T_{N1}", KR2: r"K_{R2}", TN2: r"T_{N2}"}
# ---------- Define LaTeX table
# Define table header
# DON'T CHANGE FOLLOWING ENTRIES: "Symbol", "Value"
tabular_header = ["Symbol", "Value"]
# Define column text alignments
col_alignment = ["center", "left"]
# Define Entries of all columns before the Symbol-Column
# --- Entries need to be latex code
col_1 = []
# contains all lists of the columns before the "Symbol" Column
# --- Empty list, if there are no columns before the "Symbol" Column
start_columns_list = []
# Define Entries of the columns after the Value-Column
# --- Entries need to be latex code
col_4 = []
# contains all lists of columns after the FIX ENTRIES
# --- Empty list, if there are no columns after the "Value" column
end_columns_list = []